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Abstract. This paper considers the issue of identifying the effects of spatial structure 

and the origin and destination attributes on interregional migration. A decomposition 

approach is developed based on migration models. The inter-provincial migration data 

in China over the period 1985-1990 are used to estimate a gravity migration model, an 

extended gravity model, a Poisson gravity model and a multilevel Poisson model 

which are then used to decompose the various effects on migration in China. 

 

1 Introduction 

Two kinds of approach have been used for modelling migration. The first approach 

uses age, gender, origin and destination-specific migration rates. This approach 

assumes that the number of migrants is determined by the size of population and the 

rate of migration and has been adopted in multiregional population models (Rees and 

Wilson, 1977; Rogers, 1995; Shen, 1994; 1996; Shen and Spence, 1996; 1997). 

Recent research (van Imhoff, van der Gaag, van Wissen and Rees, 1995) considered 

methods to reduce the number of population parameters to be estimated in the 
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population system. Plane (1993) considered the problems of using fixed interregional 

transition probabilities. He explored models that utilized density-dampened and 

destination-population weighted transition probabilities to overcome the problem. 

 The second approach focused on modelling migration flows directly, 

explicitly using distance, origin and destination populations to explain migration. The 

classical gravity model only considers three variables (Hua and Porell, 1979). 

Extended demo-economic models often consider other socio-economic and 

environmental factors (Isserman, 1985; Stillwell and Congdon, 1991). Such migration 

models have rarely been linked with multiregional population models due to 

difficulties in calibration. First, migration flows need to be modelled by detailed age-

specific groups. Second, many explanatory variables need to be projected first to 

project migration. Third and more importantly, the mechanism of how distance and 

spatial structure affect spatial migration flows is not well understood. Finally, it is 

well known that different model specification and different estimation methods may 

produce different parameter estimates and goodness of fit (Congdon, 1991). However, 

no further study has been made to show how different calibration of the model will 

affect the estimated contribution of the spatial structure and the origin and destination 

attributes on migration. 

 Indeed, many studies on migration have focused on the issue of model 

specification.  A lengthy debate in the 1970s (Cliff et al., 1974, 1976; Curry et al., 

1975; Johnston, 1973, 1975) and Sheppard (1979) focused primarily upon the 

problems of autocorrelation in the mass terms and the map pattern effect in the 

distance decay parameters. It has been shown that origin-specific distance decay 

terms are likely to be related to the map pattern (Fotheringham, 1981; Johnston, 1973, 
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1975). Fotheringham (1984; 1991) argued that destinations may be related by forces 

of agglomeration or competition. 

 This paper is concerned with identifying the effects of various factors 

including spatial structure, origin and destination attributes and random effects on 

migration. Total in-flows and out-flows will be decomposed into several components 

reflecting the effects of various factors. The inter-provincial migration data from the 

1990 census in China will be used. The paper is organized as follows. A brief 

introduction to inter-provincial migration in China is provided in section 2. In section 

3, an approach to decompose migration flows based on migration models will be 

developed. Section 4 specifies and estimates four migration models for China. Section 

5 examines the decomposition results. Some conclusions are reached in section 6. 

 

2 Inter-provincial migration in China 1985-1990 

Since the late 1970s, the volume of internal migration in China has been increasing 

due to more relaxed migration policies. The direction of internal migration has also 

undergone a transition from east to west migration in the pre-reform period to west to 

east migration in the reform period (Shen, 1995; 1996). 

 The exact size of migration is not clear until the 1987 1% population sampling 

survey and the 1990 population census in China. Due to well-known inconsistency 

between household registration and the residence place of many individuals, the 1990 

census considered following people as migrants over the five year period July 1, 1985 

- July 1, 1990: those whose their official household registrations had changed and 

those who had left their place of registration for over a year. 

 No migration data on migrants moving into Xizan (Tibet) were collected. 

Thus migration between Xizan and other regions in China will not be considered here. 
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The migration data set used here refer to migrations among 29 provincial regions in 

mainland China except Xizan between 1985 and 1990. Figure 1 shows the provincial 

regions in China. Here, migration is measured by the number of migrants using a 

transition approach instead of a movement approach. 

 It may be of concern that the inter-provincial migration data among 29 areas in 

China may be inadequate to fully describe the migration process in China. However, 

this is the only spatial level that migration data for China as a whole are available and 

similar data have been widely used in migration studies on China. The conventional 

population weighted distance measure has been criticized for its implicit bias as more 

migrants are moving over shorter distance. Boyle and Flowerdew (1997) proposed to 

use migration-weighted distance to overcome the problem. The method may be most 

effective for a spatial configuration when an area was circled by another area like 

inner and outer London. Whether it will be an effective measure in the case of China 

remains to be tested and is beyond the scope of this paper. On the other hand, this 

paper will use highway distances rather than distances calculated from simple 

centroids and this may make it more difficult to implement Boyle and Flowerdew’s 

method. 

 Table 1 presents the in-migrations, out-migrations and net migrations to and 

from 29 regions. According to the 1990 census, there were 11 million migrants who 

moved between the 29 provincial regions over the five year period. Guangdong 

received a largest net gain of more than one million migrants due to its rapidly 

expanding economy and heavy inflow of capital from Hong Kong, Macao and foreign 

countries. Beijing, the capital of China, and Shanghai, the leading economic center of 

China, both received a net gain of more than half million migrants. The most 

populous province, Sichuan, is the largest loser of migrants during the period ( 0.87 
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million ). The least developed coastal province, Guangxi, lost 0.45 million population 

through migration. It is interesting to note that the coastal province, Zhejiang, is the 

third largest net loser. The overall picture of migration gains in China is as follows. 

Those regions with rapidly expanding economies are usually the top destinations of 

migrants. The main source of migrants were not necessary the poorest regions in the 

country, but the medium and less developed regions. Relatively developed regions 

such as Zhejiang could also be a major source of migrants as skilled individuals may 

move to other places. The Zhejiang village in Beijing formed by migrants from 

Zhejiang is a well know example (Li, 1996). Migration efficiency is the ratio of net 

migration to the total of in and out migrations. Main origin and destination regions 

have high migration efficiency. 

 

3 Decomposition of migration flows based on migration models 

Researchers have recognized the important role of distance in the migration process.  

Distance is often used as an explanatory variable to describe the volume of migration, 

Mij, between places i and j. But no attempt has been made to identify the contribution 

of distance and other variables to migration except in terms of the estimated 

parameters. Specifically, no answer has been attempted to such question as what 

percentage of out or in migrations from or to a region is due to its particular location 

or due to its own particular status. Answers to these questions may be useful to 

formulate scenarios for migration projection. Migration rates based approach for 

migration projection totally ignores the role of distance and other variables at origin 

and destination. 

 Assuming that a migration model has been properly specified and estimated, 

the expected migration flow, ME
ij, between region i and j can be expressed by a 
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migration model. There are various ways to specify the random component of a 

migration model which is related to model specification but not for migration 

projection. This section will focus on the expected migration flow and the 

specification of the random component will be discussed in the next section.  

Consider first the gravity model which can be expressed as follows using a distance 

variable, dij, and populations at origin and destination pi and pj respectively: 

M = a p p dij
E

i
a

j
a

ij
b

0
1 2       (1) 

 Assuming that the above model represents the migration flows correctly, then 

the contributions of the origin and destination attributes and the spatial structure to 

total outflows and inflows might be estimated using the following approach. 

 The expected total outflows from region i can be expressed as follows: 

M = a p p di
E

j j i
i
a

j
a

ij
b

, ≠
∑ 0

1 2       (2) 

From the point of region i, the volume of total out-migrations is partly determined by 

its spatial configuration (distance) in relation to other regions. If other things are 

equal, the shorter the distances between region i and other regions, the larger the 

volume of the out-migrations from region i. We can estimate the following number of 

out-migrations from region i using average population size of the spatial system to 

remove the effect of different population size at origin and destination on migration: 

M = a p p di
CS

j j i

a a
ij

b

, ≠
∑ 0

1 2      (3) 

 It is proposed here that the average of MCS
i (“CS” refers to Constant and 

Spatial structure indicating two components of MCS
i), MC, means the constant volume 

of out migrations if the spatial configuration is the same for all regions and it may be 

called the “constant effect”, the remaining part of MCS
i, MS

i , after taking away the 

average reflects the effect of different spatial configuration on out migrations and it is 
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named as the “spatial structure effect I: space”. Another part of the spatial structure 

effect which will be discussed next. 

 The “constant effect” and the “spatial structure effect I: space” can be 

calculated as follows: 

M = a p p d
C

N
i j j i

a a
ij

b1
0

1 2∑ ∑
≠,

     (4) 

M = a p p d Mi
S

j j i

a a
ij

b C

, ≠
∑ −0

1 2      (5) 

 Here N is the number of regions in the spatial system. 

 The migration flows from region i can also be affected by the distribution of 

destination populations in the spatial system. The migration from region i will be 

greater if a region with a larger population is very close to region i. This is part of the 

effect of spatial structure and may be called “spatial structure effect II: attribute 

distribution”. This is different from the “spatial structure effect I: space” which 

assumes that population is the same in all regions. It can be calculated using 

destination populations instead of average population in equation (5) and then taking 

away the effects identified previously: 

 M = a p p d M Mi
D

j j i

a
j
a

ij
b

i
S

, ≠
∑ − −0

1 2 C

C

    (6) 

 The difference between the total of first three effects and the expected 

outflows from region i will reflect the effect of the attribute in region i called the 

“own attribute effect”. This is different from the effect of the distribution of attributes 

among other regions. It can be calculated by using population at region i instead of 

average population in equation (6) and then taking away the effects identified before: 

M = a p p d M M Mi
O

j j i
i
a

j
a

ij
b

i
D

i
S

, ≠
∑ − − −0

1 2    (7) 
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 The first item in the right of equation is the expected total outflow from region 

i.  It has now been decomposed into four components: 

M = M M M Mi
E C

i
S

i
D

i
O+ + +      (8) 

 Similarly, total expected inflows to region j, ME
j , can be calculated as follows 

and it can also be decomposed into four components. 

M = a p p dj
E

i i j
i
a

j
a

ij
b

, ≠
∑ 0

1 2       (9) 

 The “constant effect” for each inflow is the same of the “constant effect” for 

each outflow. It represents the expected total inflows to a region if everything is equal 

and can be calculated as follows: 

M = a p p d
C

N
j i i j

a a
ij

b1
0

1 2∑ ∑
≠,

     (10) 

 The “spatial structure effect I: space” for inflows to region j reflects the effect 

of the spatial location of origins on migrations into region j and can be calculated as 

follows: 

M = a p p d Mj
S

i i j

a a
ij

b C

, ≠
∑ −0

1 2      (11) 

 The migration flows to region j is also affected by the distribution of origin 

populations in the spatial system. This is part of the effect of spatial structure and is 

called “spatial structure effect II: attribute distribution”. It can be calculated as 

follows for inflows to region j : 

 M = a p p d M Mj
D

i i j
i
a a

ij
b

j
S

, ≠
∑ − −0

1 2 C     (12) 

 The difference between the total of first three effects and the expected inflows 

to region j reflect the effect of the attribute in region j called the “own attribute 

effect”. It can be calculated as follows: 
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M = a p p d M M Mj
O

i i j
i
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j
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j
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j
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C∑ − − −0
1 2    (13) 

 The expected total inflows to region j has now been decomposed into four 

components: 

M = M M M Mj
E C

j
S

j
D

j
O+ + +      (14) 

 Consider now a general migration model which include several explanatory 

attributes, X=[x1,x2,..xm], at origin and destination regions as follows: 

M = a v X w X f dij
E

i j ij0 ( ) ( ) ( )

+

     (15) 

 The decomposition approach described above can be applied straightforwardly 

to the above general migration model by substituting pa1
i, pa2

j and db
ij with functions 

v(Xi), w(Xj) and f(dij) respectively. Average attributes need to be used where average 

population is used in the case of gravity model. 

 

4 Estimating inter-regional migration models  

Migration models need to be estimated first before the decomposition approach can 

be applied to identify various migration components. In this paper, four migration 

models will be estimated for China. 

 The first model is the gravity model in equation (1) and will be estimated 

using Least Squares Estimation (LSE) in log-linear form. The model is specified as 

follows: 

ln ln ln ln lnM = a a p a p b d eij i j ij ij0 1 2+ + +    (16) 

Here eij is assumed to be a normal distributed random variable.  

 Indeed, migration between two areas is also affected by other environmental, 

social and economic factors. The second migration model used in this paper is an 
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extended gravity migration model which also includes several socio-economic and 

demographic variables. The model is specified as follows: 

ln ln ln ln lnM = a a x a x b d eij
k

k ik
k

k jk ij ij0 1 2+ + +∑ +∑      (17) 

 Eight variables are used in model (17) in addition to three variables in a 

gravity model. These variables are: 

 

GNPIi  Annual GNP growth rate over the period 1981-1989 at origin 

GNPIj  Annual GNP growth rate over the period 1981-1989 at destination 

ILLIj  Percentage of illiterate and semi-illiterate population aged 15+ in 1990 

  at destination 

AGRILi Percentage of agricultural employment in total rural employment in 

  1990 at origin 

AGRILj Percentage of agricultural employment in total rural employment in 

  1990 at destination 

POP8290i Percentage of population increase between 1982 and 1990 census  

  periods at origin 

DENSITYi Population density in 1990 at origin 

DENSITYj Population density in 1990 at destination 

 

 These data for provincial regions of China are available from DPS (1991) and  

SSB (1990, 1991 and 1993). These variables describe important demographic, socio-

economic situations in various areas which may affect the migration process. They 

have been selected by stepwise regression. 
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 It is noted that the above two migration models (16) and (17) are estimated to 

minimise the residual squares of logged number of migration which can be expressed 

as: 

Minimize M M =ij ij
E M

M
ij

ij
E∑ ∑−(ln ln ) (ln )2 2

+

  (18) 

It is clear that the LSE estimation of log-linear migration model aims to minimise the 

sum of the squares of logged ratios of the real migration size to expected migration 

size. Thus a ratio of 4/3 will be treated as the same as 4000/3000 while in reality a 

large flow of 4000 is much more important than a minor flow of 4. This kind of 

estimation criteria often result in poor fitting of large migration flows (Congdon, 

1991).  Another problem of the LSE estimation is that the total numbers of the actual 

and expected migrants will be different due to log-transformation. 

 A Poisson model is a more realistic description of the migration process than a 

log-linear model (Flowerdew and Aitkin, 1982). The third migration model is a 

Poisson gravity model with three variables. The total of actual migrants will be equal 

to total expected migrants in the model.  

M = a a p a p b d uij i j ij ijexp(ln ln ln ln )0 1 2+ + +   (19) 

Here, migration flow is assumed to be a Poisson distributed variable and uij is the 

random residual. 

 In recent years, multilevel models have been developed to model the random 

variation at different group or regional levels (Jones, 1991). Boyle and Shen (1997) 

used a multilevel modelling approach to explore the relationship between migration 

and individual level and regional level factors. In terms of spatial migration, some 

origin or destination specific processes might be in operation which will affect origin 

and destination-specific migrations systematically. Thus a second level based on 
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origin or destination can be specified for multilevel migration modelling. The fourth 

migration model is a multilevel Poisson migration model which also includes several 

socio-economic and demographic variables. The model is specified as follows: 

M = a a x a x b d eij
k

k ik
k

k jk ij iexp(ln ln ln ln )0 1 2 0+ + + +∑ uij+∑     (20) 

Here, migration flow is assumed to be a Poisson distributed variable at level one and 

uij is the random residual at level one. The level two is defined on the basis of origin 

regions. This is based on many empirical findings that migration from origins is more 

stable depending mainly on demographic factors than migration to destinations 

depending on both economic and other factors (Shen, 1996). It is assumed that there 

is random variation at level two which is represented by a normally distributed 

random variable e0i. The model can be estimated using Mln software and Macros with 

a LOG link (Yang, Goldstein and Rasbash, 1996). Extra Poisson variation at level one 

is assumed as the model fails to converge if using fixed Poisson variation of one. 

 Table 2 presents the estimation results of the migration models (16), (17), (19) 

and (20). For the gravity model, all three variables are highly significant. In terms of 

logged number of migrants, the gravity model explained over 54% of its total 

variation. However, the model only explains 14.61% variation of the number of 

migrants for all flows. 

 In terms of logged number of migrants, the extended gravity model explained 

over 69% of its total variation which is much better than the gravity model. However, 

the model only explains 2.99% variation of the number of migrants for all flows and 

is much worse than the gravity model. The dramatic reduction in terms of model 

goodness of fit for both models is due the use of estimation objective equation (18) in 
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log-linear regressions. It is clear that adding more variables to the gravity model does 

not necessarily improve the model performance in terms of the number of migrants. 

 In the Poisson gravity model, the population parameter became quite small. 

However, the model explained 23.23% of the total variation of migrants, better than 

two gravity models. 

 In the multilevel Poisson model, the variations at level one and level two are 

both significant. All variables except GNPIi (annual GNP growth rate over the period 

1981-1989 at origin) and AGRILi (percentage of agricultural employment in total 

rural employment in 1990 at origin) are significant at 0.05 level. It is noted that the 

estimated parameters are different among various models reflecting the impact of 

model mis-specification. In the multilevel Poisson model, GNPIj (annual GNP growth 

rate over the period 1981-1989 at destination) has a positive value of 2.262 indicating 

the strong pulling effect of rapidly growing regions to migrants. On the other hand, 

ILLIj (percentage of illiterate and semi-illiterate population aged 15+ in 1990 at 

destination), AGRILj (percentage of agricultural employment in total rural 

employment in 1990 at destination) and DENSITYj (population density in 1990 at 

destination) have negative parameters of -0.7752, -1.9580, -0.3538 respectively. This 

indicates that, if everything is equal, regions with high percentage of illiterate and 

semi-illiterate population, high percentage of rural population engaged in agricultural 

employment and high population density are not attractive to migrants in China. It is 

clear that inter-provincial migration in China is been stimulated by the development, 

industrialisation and urbanisation processes. Two origin variables POP8290i 

(percentage of population increase between 1982 and 1990 census periods at origin) 

and DENSITYi (population density in 1990 at origin) also have negative parameters 

of -0.5871 and -0.3859 respectively. Thus, if everything is equal, regions with rapid 

 13



population growth and high population density send out less migrants. It seems that 

the so called ‘PUSHING” mechanism is not operating effectively in the interregional 

migration. For inter-provincial migration, the origin population seems to be more 

important in determining the out-migration flow while in-migration is much more 

selective toward rapidly growing regions. Indeed, the parameter of origin population 

is much greater than that of destination population parameter.  

 Overall, the multilevel Poisson migration model explained over 39% of the 

variation of the number of migrants in all flows. This is a significant improvement 

over three other models. An alternative specification of a multilevel binomial model 

was also attempted but parameter estimates are generally close to the Poisson model. 

Nevertheless, over 60% of the migration variation remains unexplained indicating the 

complex nature of inter-provincial migration in China. Some descriptive analyses of 

internal migration in China tend to provide a convincing explanation of migration. 

But it is clear that such explanation may only provide a partial answer. Descriptive 

analysis is unable to predict how migration might change in response to changing 

regional systems. The decomposition of migration flows into several components 

might provide a way to capture such changes. 

 As the Poisson gravity model and multilevel Poisson model are better than 

other two models, they will be used in the decomposition of in and out migrations. 

 

5 Decomposing regional outflows and inflows in China 

The parameters estimated for the Poisson gravity model and multilevel Poisson model 

can now be used to decompose regional outflows and inflows in China. A random 

component might be defined as the difference between the real flow and estimated 
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flow to indicate how well outflows and inflows have been modelled by a migration 

model. 

 Tables 3 and 4 presents the decomposing result of total outflows and inflows 

based on the Poisson gravity model. A relative random error is calculated as the 

percentage of  random error out of expected flows. The estimated constant effect 

based on the Poisson gravity model is 402629. This is the number of in-migrations or 

out-migrations that each region is expected to receive or send if all regions have the 

same location in the spatial system and have the same values of all attributes. Other 

effects and the real and expected flows in tables 3 and 4 have been calculated as a 

percentage of the constant effect. The space effect is almost the same for in and out 

flows in each region and the effects of own attribute are in same direction. The effects 

of attribute distribution are relatively small. 

 The results from the multilevel Poisson model are presented in table 5 and 6. 

The estimated constant effect is 252819 for each region. This is much smaller than 

that of Poisson gravity model, but almost the same as gravity model. It is clear that 

the Poisson gravity model has used a larger constant effect to achieve a better overall 

performance than the gravity model. The space effect could be positive or negative 

depends on the particular location of a region in the spatial system. Some central 

located regions will send out extra migrants if other things remain equal. For example, 

the space effect on out-migration from Beijing is 57.13% while it is -68.59% for out-

migration from Xinjiang. 

 The attribute distribution effects have different direction in two models. 

According to table 5, all regions have a positive effect of the spatial distribution of 

attributes on their out-migrations. This effect reflects whether the real distribution of a 

variable among destination regions will attract more out-migrations from a region 
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than the case that each destination has the same average value of attributes. It looks 

like that each region send out extra migrants in an unbalanced spatial system.  

 The estimated space effects and own attribute effects based on two Poisson 

models are in the same direction. The own attribute effect represents the effect on out-

migration if a region has large or small values of attributes than the average value in 

the spatial system. For the multilevel Poisson model, this effect is the combined result 

of the population size and other socio-economic variables. Such effects could be quite 

significant for some regions. For example, the own attribute effects on out-migration 

are 240.64% in Sichuan and -169.33% in Shanghai respectively. For some regions, 

the own attribute effect is not particularly larger than the space effect and the attribute 

distribution effect. For example, for out-migrations from Anhui, the space and 

attribute distribution effects are 42.22% (of the constant effect) and 95.53% 

respectively while the own attribute effect is 58.18%. This clearly indicates that it is 

important to consider the spatial structure in modelling interregional migration. 

 Finally, the random effect represents the component of migration which has 

not been explained by the model. This is closely related to the random error. The 

random errors of out-migrations in the multilevel Poisson model are smaller than 

those in the Poisson gravity model in most cases (tables 3 and 5). For example, the 

random error of out-migrations from Xinjiang is 229.13% in Poisson gravity model 

but reduced to 70.42% in the multilevel Poisson model. 

 It is interesting to examine the various effects on total  in-migrations in 

various regions which is usually difficult to model. These effects are presented in 

table 6 and figures 2-5. According to figure 2, the space effect on in-migrations is the 

highest in the eastern coastal regions in China spanning from Zhejiang to Hebei. 

 16



Many regions in the western part of China have low accessibility in the spatial system 

and will not attract many migrants if other things are equal. 

 The spatial pattern of the attribute distribution effects on in-migrations in 

figure 3 looks unfamiliar at first. Due to the spatial distribution of population and 

other socio-economic variables, many regions in the central part of China have 

relative large positive effects. This means that a region will receive more migrants if 

its neighbouring regions have large populations or with poor socio-economic 

conditions. The own attribute effect represents the pulling force of the region to 

migrants due to their population size and/or socio-economic conditions. Several 

regions including Beijing, Heilongjiang, Jiangsu, Zhejiang, Guangdong have 

outstanding pull effects (table 6 and figure 4). 

 Finally, figure 5 presents the random effect on in-migration which is not 

explained by the multilevel Poisson model. A few regions including Liaoning, Anhui, 

Guangdong, Hainan, Sichuan and Xinjiang have large positive random effects and 

they are under predicted by the model. Table 6 also presents the random errors of in-

migrations in various regions. Several regions still have a random error over 50%. 

This means that modelling interregional migration in China is not a easy task and 

further research is needed to explore new modelling techniques.  

 

6 Conclusion 

This paper considers the issue of identifying the effects of spatial structure and the 

origin and destination attributes on migration. A decomposition approach is 

developed based on migration models. A set of migration data in China are used to 

estimate various migration model which are then used to decompose the various 

effects on migration in China.  
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 It is found that the multilevel Poisson migration model is the best model which 

explained over 39% of the variation. The multilevel Poisson model indicates that, if 

everything is equal, regions with high percentage of illiterate and semi-illiterate 

population, high percentage of rural population engaged in agricultural employment 

and high population density are not attractive to migrants in China. It seems that inter-

provincial migration in China is been stimulated by the development, industrialisation 

and urbanisation processes. On the other hand, regions with rapid population growth 

and high population density send out less migrants. It seems that the so called 

‘PUSHING” mechanism is not operating effectively in the interregional migration..  

 The space effect could be positive or negative depends on the particular 

location of a region in the spatial system. The space effects are almost identical to 

inflows and outflows. The space effect on in-migrations is the highest in the eastern 

coastal regions in China spanning from Zhejiang to Hebei. 

 Due to the spatial distribution of population and other socio-economic 

variables, many regions in the central part of China have relatively large positive 

attribute distribution effects. Several regions including Beijing, Heilongjiang, Jiangsu, 

Zhejiang, Guangdong have outstanding pull effects, the own attribute effect. 

 It is expected that various components of inflows and outflows of migrations 

can be used for formulating migration projection scenarios with adjustments. The 

mechanisms to achieve this and the ways to deal with more detailed age-groups is 

beyond the scope of this paper and will be the focus of further research. 
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Table 1 Inter-provincial migrations in China 1985-1990 
 
Region In-migrations Out-migrations Net migration Migration efficiency 
Guangdong 1257218 250494 1006724 0.668 
Beijing 671671 132148 539523 0.671 
Shanghai 664756 132562 532194 0.667 
Liaoning 540735 294996 245739 0.294 
Tianjin 244065 72194 171871 0.543 
Jiangsu 789555 620478 169077 0.120 
Shanxi 306578 218472 88106 0.168 
Hubei 429914 346274 83640 0.108 
Shandong 607446 534842 72604 0.064 
Xinjiang 341573 277412 64161 0.104 
Hainan 150059 105977 44082 0.172 
Ningxia 91883 56609 35274 0.238 
Qinghai 115087 102141 12946 0.060 
Fujian 250962 238387 12575 0.026 
Yunnan 249462 277432 -27970 -0.053 
Nei Mongol 254264 303129 -48865 -0.088 
Shaanxi 309690 362349 -52659 -0.078 
Jiangxi 224412 293772 -69360 -0.134 
Gansu 197175 280715 -83540 -0.175 
Henan 474867 589626 -114759 -0.108 
Jilin 237232 355532 -118300 -0.200 
Guizhou 190056 312786 -122730 -0.244 
Hebei 519147 645704 -126557 -0.109 
Anhui 336665 533388 -196723 -0.226 
Heilongjiang 367394 607485 -240091 -0.246 
Hunan 271036 527614 -256578 -0.321 
Zhejiang 332311 632323 -300012 -0.311 
Guangxi 142436 588889 -446453 -0.610 
Sichuan 439130 1313049 -873919 -0.499 
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Table 2 Estimation result of gravity and Poisson migration models 
 

Variables Gravity model Extended gravity 
model 

Poisson model Multilevel Poisson 
model 

 Para-
meter 

Standard 
error 

Para- 
meter 

Standard 
error 

Para-
meter 

Standard 
error 

Para-
meter 

Standard 
error 

Constant (a0) -5.8744* 1.2883 6.0236* 1.4904 -1.0510 1.8000 2.4590 2.5530 
Distance -1.1000* 0.0593 -1.2431* 0.0534 -0.8623* 0.0589 -1.1040* 0.0408 
Origin Population 0.7777* 0.0448 0.9063* 0.0537 0.6945* 0.0741 0.8318* 0.1364 
Dest. Population 0.5356* 0.0448 0.7423* 0.0495 0.2720* 0.0631 0.6192* 0.0714 
GNPIi   0.5372* 0.2294   0.1906 0.5013 
GNPIj    1.2504* 0.2296   2.2620* 0.2406 
ILLIj   -0.4233* 0.1009   -0.7752* 0.1116 
AGRILi   -0.8929* 0.2090   0.0927 0.5185 
AGRILj   -2.2621* 0.2186   -1.9580* 0.2517 
POP8290i   -0.8639* 0.1364   -0.5871* 0.2805 
DENSITYi   -0.3821* 0.0429   -0.3859* 0.1024 
DENSITYj   -0.2843* 0.0422   -0.3538* 0.0566 
         
Level 1 variance     24170 1198 9753 494 
Level 2 variance       0.0899 0.0322 
         
R2(logged M) 0.5425  0.6954      
R2(unlogged M) 0.1461  0.0299  0.2323  0.3935  

Note: * significant parameter at 0.05 level 
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Table 3 Decomposition of total out-migrations in various regions based on Poisson 
 gravity model estimation (%*) 
 
Region Real Flow Expected 

Flow 
Space Attribute 

distribution
Own 
attribute 

Random 
effect 

Random error

Beijing 32.82 53.15 37.53 -8.26 -76.12 -20.32 -38.24
Tianjin 17.93 47.51 39.43 -5.88 -86.04 -29.58 -62.26
Hebei 160.37 180.83 41.41 -9.21 48.63 -20.46 -11.31
Shanxi 54.26 97.95 24.63 -3.80 -22.88 -43.69 -44.6
Nei Mongol 75.29 56.03 -8.73 -6.56 -28.68 19.26 34.37
Liaoning 73.27 85.51 -9.92 -5.41 0.83 -12.24 -14.32
Jilin 88.30 57.15 -18.25 -3.30 -21.29 31.15 54.51
Heilongjiang 150.88 64.56 -26.47 -4.34 -4.63 86.32 133.7
Shanghai 32.92 55.74 16.28 0.94 -61.47 -22.82 -40.93
Jiangsu 154.11 183.01 27.49 -2.09 57.61 -28.90 -15.79
Zhejiang 157.05 113.29 15.29 -6.87 4.87 43.76 38.63
Anhui 132.48 166.84 28.97 0.30 37.57 -34.37 -20.6
Fujian 59.21 64.76 -20.62 -1.89 -12.73 -5.55 -8.58
Jiangxi 72.96 109.16 12.59 -1.04 -2.40 -36.19 -33.16
Shandong 132.84 199.78 23.35 -6.67 83.09 -66.94 -33.51
Henan 146.44 208.50 24.83 -4.19 87.85 -62.05 -29.76
Hubei 86.00 146.67 18.20 -1.35 29.82 -60.66 -41.36
Hunan 131.04 143.27 7.40 -2.15 38.02 -12.22 -8.53
Guangdong 62.21 108.15 -19.06 -3.41 30.62 -45.94 -42.48
Guangxi 146.26 80.27 -22.85 -1.34 4.46 65.99 82.2
Hainan 26.32 19.76 -31.48 -0.47 -48.28 6.56 33.21
Sichuan 326.12 150.31 -20.45 -5.21 75.96 175.81 116.97
Guizhou 77.69 71.52 -17.75 -1.02 -9.71 6.16 8.62
Yunnan 68.91 71.39 -22.80 -3.24 -2.57 -2.48 -3.48
Shaanxi 90.00 91.39 6.56 -3.85 -11.33 -1.39 -1.52
Gansu 69.72 54.10 -11.20 -9.33 -25.36 15.62 28.86
Qinghai 25.37 17.04 -19.10 -4.18 -59.68 8.33 48.9
Ningxia 14.06 17.71 -18.13 -4.49 -59.67 -3.65 -20.61
Xinjiang 68.90 20.93 -57.13 -2.58 -19.36 47.97 229.13
Note: figures in this table are in percentages of the constant effect except that the 
random error is in percentage of expected flow 
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Table 4 Decomposition of total in-migrations in various regions based on Poisson 
 gravity model estimation (%*) 
 
Region Real Flow Expected 

Flow 
Space Attribute 

distributio
n 

Own 
attribute 

Random 
effect 

Random error

Beijing 166.82 90.95 37.53 -8.70 -37.87 75.87 83.42
Tianjin 60.62 90.75 39.43 -3.39 -45.28 -30.13 -33.21
Hebei 128.94 146.64 40.00 -10.29 16.93 -17.70 -12.07
Shanxi 76.14 115.65 24.63 0.93 -9.91 -39.51 -34.16
Nei Mongol 63.15 72.50 -7.32 -7.44 -12.74 -9.35 -12.9
Liaoning 134.30 84.11 -9.92 -6.30 0.32 50.19 59.68
Jilin 58.92 69.54 -18.25 -3.03 -9.18 -10.62 -15.27
Heilongjiang 91.25 65.86 -26.47 -5.85 -1.81 25.39 38.55
Shanghai 165.10 93.28 16.28 8.53 -31.52 71.82 76.99
Jiangsu 196.10 151.26 27.49 2.96 20.82 44.84 29.64
Zhejiang 82.54 108.39 15.29 -8.75 1.85 -25.85 -23.85
Anhui 83.62 153.37 28.97 9.81 14.59 -69.75 -45.48
Fujian 62.33 74.76 -20.62 0.82 -5.44 -12.43 -16.63
Jiangxi 55.74 116.45 12.59 4.85 -0.99 -60.72 -52.14
Shandong 150.87 143.97 23.35 -6.72 27.34 6.90 4.79
Henan 117.94 152.60 24.83 -1.66 29.43 -34.66 -22.71
Hubei 106.78 134.59 18.20 4.93 11.46 -27.81 -20.67
Hunan 67.32 122.94 8.64 0.31 13.99 -55.62 -45.24
Guangdong 312.25 89.20 -19.06 -2.65 10.90 223.05 250.07
Guangxi 35.38 80.92 -22.85 1.97 1.79 -45.54 -56.28
Hainan 37.27 44.14 -31.48 3.13 -27.50 -6.87 -15.57
Sichuan 109.07 95.09 -20.45 -7.37 22.92 13.97 14.69
Guizhou 47.20 81.29 -17.75 3.19 -4.16 -34.08 -41.93
Yunnan 61.96 74.75 -22.80 -1.41 -1.04 -12.79 -17.11
Shaanxi 76.92 101.58 6.56 -0.23 -4.76 -24.66 -24.28
Gansu 48.97 66.05 -11.20 -12.02 -10.73 -17.08 -25.85
Qinghai 28.58 41.42 -20.34 -4.99 -33.25 -12.83 -30.98
Ningxia 22.82 43.05 -18.13 -5.17 -33.65 -20.23 -46.99
Xinjiang 84.84 31.17 -57.13 -2.59 -9.11 53.66 172.16
Note: figures in this table are in percentages of the constant effect except that the 
random error is in percentage of expected flow 
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Table 5 Decomposition of total out-migrations in various regions based on multilevel 
 Poisson model estimation (%*) 
 
Region Real Flow Expected 

Flow 
Space  Attribute 

distribution
Own 
attribute 

Random 
effect 

Random 
error 

Beijing 52.27 40.00 57.13 27.46 -144.58 12.27 30.67
Tianjin 28.56 46.03 58.99 79.56 -192.52 -17.47 -37.96
Hebei 255.40 275.89 56.85 49.14 69.90 -20.48 -7.42
Shanxi 86.41 159.10 30.63 41.09 -12.62 -72.69 -45.69
Nei Mongol 119.90 224.02 -14.50 20.97 117.56 -104.13 -46.48
Liaoning 116.68 142.29 -15.15 29.33 28.11 -25.60 -17.99
Jilin 140.63 163.70 -21.21 56.62 28.29 -23.08 -14.10
Heilongjiang 240.28 201.36 -31.00 18.58 113.78 38.93 19.33
Shanghai 52.43 37.88 27.74 79.47 -169.33 14.55 38.40
Jiangsu 245.42 220.31 41.39 18.81 60.12 25.11 11.40
Zhejiang 250.11 256.36 24.63 45.38 86.35 -6.25 -2.44
Anhui 210.98 295.92 42.22 95.53 58.18 -84.94 -28.71
Fujian 94.29 83.04 -29.56 30.76 -18.16 11.25 13.55
Jiangxi 116.20 170.32 12.07 41.30 16.95 -54.12 -31.78
Shandong 211.55 263.17 27.31 38.19 97.67 -51.62 -19.61
Henan 233.22 256.74 27.19 38.84 90.70 -23.52 -9.16
Hubei 136.97 213.51 18.04 33.95 61.52 -76.54 -35.85
Hunan 208.69 216.63 5.23 32.56 78.84 -7.94 -3.66
Guangdong 99.08 104.28 -27.31 7.65 23.94 -5.20 -4.99
Guangxi 232.93 115.00 -31.38 29.67 16.71 117.92 102.54
Hainan 41.92 23.22 -41.20 29.75 -65.33 18.70 80.56
Sichuan 519.36 320.25 -29.70 9.32 240.64 199.11 62.17
Guizhou 123.72 106.34 -25.17 22.20 9.31 17.38 16.35
Yunnan 109.74 131.36 -31.15 13.46 49.06 -21.63 -16.46
Shaanxi 143.32 145.38 2.25 25.71 17.42 -2.06 -1.42
Gansu 111.03 110.30 -15.01 2.62 22.70 0.73 0.66
Qinghai 40.40 61.69 -23.90 10.44 -24.85 -21.28 -34.51
Ningxia 22.39 21.67 -26.81 20.34 -71.87 0.72 3.34
Xinjiang 109.73 64.39 -68.59 5.87 27.10 45.34 70.42
Note: figures in this table are in percentages of the constant effect except that the 
random error is in percentage of expected flow
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Table 6 Decomposition of total in-migrations in various regions based on multilevel 
 Poisson model estimation (%*) 
 
Region Real Flow Expected 

Flow 
Space Attribute 

distribution
Own 
attribute 

Random 
effect 

Random 
error 

Beijing 265.67 277.61 57.13 4.50 115.98 -11.93 -4.30
Tianjin 96.54 100.64 58.99 10.48 -68.83 -4.10 -4.08
Hebei 205.34 210.39 55.02 4.20 51.17 -5.05 -2.40
Shanxi 121.26 194.34 30.63 30.40 33.32 -73.08 -37.60
Nei Mongol 100.57 153.23 -12.68 3.74 62.17 -52.66 -34.37
Liaoning 213.88 193.62 -15.15 15.80 92.97 20.26 10.47
Jilin 93.83 120.88 -21.21 35.92 6.18 -27.05 -22.38
Heilongjiang 145.32 213.30 -31.00 12.01 132.29 -67.98 -31.87
Shanghai 262.94 265.82 27.74 42.65 95.43 -2.88 -1.09
Jiangsu 312.30 386.48 41.39 20.62 224.47 -74.18 -19.19
Zhejiang 131.44 239.63 24.63 -12.56 127.57 -108.19 -45.15
Anhui 133.16 94.46 42.22 32.16 -79.92 38.71 40.98
Fujian 99.27 104.16 -29.56 14.90 18.82 -4.90 -4.70
Jiangxi 88.76 119.89 12.07 27.92 -20.11 -31.12 -25.96
Shandong 240.27 235.15 27.31 9.76 98.08 5.12 2.18
Henan 187.83 206.44 27.19 23.86 55.39 -18.61 -9.02
Hubei 170.05 162.47 18.04 29.20 15.24 7.58 4.66
Hunan 107.21 125.74 6.60 22.69 -3.55 -18.53 -14.74
Guangdong 497.28 356.27 -27.31 12.86 270.72 141.01 39.58
Guangxi 56.34 57.93 -31.38 21.13 -31.82 -1.59 -2.75
Hainan 59.35 36.54 -41.20 21.27 -43.52 22.81 62.42
Sichuan 173.69 133.09 -29.70 11.25 51.53 40.61 30.51
Guizhou 75.17 63.07 -25.17 31.14 -42.90 12.11 19.20
Yunnan 98.67 85.96 -31.15 21.88 -4.77 12.72 14.79
Shaanxi 122.49 123.13 2.25 29.49 -8.61 -0.64 -0.52
Gansu 77.99 70.12 -15.01 14.67 -29.54 7.87 11.23
Qinghai 45.52 29.58 -25.27 23.26 -68.41 15.94 53.91
Ningxia 36.34 26.98 -26.81 21.62 -67.83 9.36 34.69
Xinjiang 135.11 83.23 -68.59 7.27 44.55 51.87 62.32
Note: figures in this table are in percentages of the constant effect except that the 
random error is in percentage of expected flow 
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