

Integrating Artificial Intelligence in Teaching and Learning Geography in Hong Kong Secondary Schools

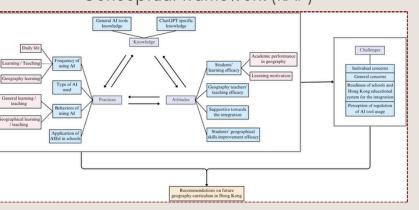
RESEARCH BACKGROUND

- 1. Artificial Intelligence in Education (AIEd)
- AIEd has gained global attention since 2016 \rightarrow offering promise for <u>enhancing educational</u> <u>methodologies</u>
- 2. Geospatial AI (GeoAI)
- Widely used for <u>professional spatial analysis</u> → holding potential to enhance learning outcomes in general geography education
- 3. Geography curriculum
- Hong Kong's secondary geography curriculum, revised for junior (2011) and senior (2022, updated from 2007) \rightarrow <u>lacking alignment</u> with technological advancements

RESEARCH OBJECTIVES

- 1.To investigate geography teachers' and students' knowledge, attitudes, and practices (KAP) regarding Al tool integration in the Hong Kong geography curriculum
- 2.To assess Al tools' <u>effectiveness</u> in enhancing secondary students' geography learning outcomes <u>compared to traditional methods</u>
- 3. To explore opportunities and challenges of the Al tool integration
- 4.To provide <u>recommendations</u> for <u>incorporating Al</u> tools into the design of Hong Kong geography curriculum

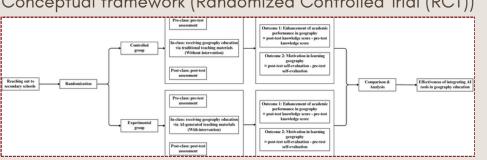
RESEARCH SIGNIFICANCE


Knowledge

<u>Limited AIEd research</u> on secondary geography education in Hong Kong.

- Insufficient progress in evaluating AIEd's <u>practical effectiveness</u> beyond theoretical planning
- Practical
- Explore <u>practical integration</u> of Al tools in geography education via AIEd Geography Trial
- Provide <u>constructive insights</u> and recommendations for HKEDB's <u>future</u> geography curriculum development

_Methodology


Conceptual framework (KAP)

Methodology framework

Conceptual framework (Randomized Controlled Trial (RCT))

Primary data

- 1. Questionnaires (Nov 2024 Mar 2025)
- Distribution through sending participation questionnaires, and Hong Kong Geography Day
- 28 teachers & 208 students
- 2. In-depth interviews (11 interviewees)
- 3. AIEd Geography Trial (RCT) (3-4 Mar 2025

Secondary data 1. Literature review

2. Governmental publication

METHODS OF ANALYSIS

- 1. Independent Samples T-test: <u>KAP comparison</u> between teachers and students & RCT comparison between groups
- 2. Paired Samples T-test: RCT comparison within groups (pre- and post-test comparison)
- 3. <u>Qualitative</u> analysis: <u>post-RCT assessment</u> analysis

KAP COMPARISON BETWEEN TEACHERS AND STUDENTS

Knowledge 7.86/10 (1.18) 6.89/10 (1.65) 0.97/10 (0.33, 1.60) 234 2.990 (P<0.01)	Dimension	Overall m Teachers (n=28)	Students (n=208)	Mean Difference (%)	95% CI for the Difference	Degrees of freedom	t-value	P-value (Two-tailed)	Significance
Attitude (0.68) (0.81) (-13.5%) (-0.56, 0.07) 234 -1.514 0.131 No Practice 1.28/2 1.51/2 -0.23/6 (-0.33, -0.13) 237 -4.481 P<0.001 Yes Challenge 3.58/6 2.89/6 -0.69/6 (-0.30, 1.09) 234 3.448 P<0.001 Yes	Knowledge	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(0.33, 1.60)	234	2.990		Yes
Practice (0.16) (0.28) (-14.0%) (-0.33, -0.13) 237 -4.481 P<0.001 Yes Challenge (0.16) (0.28) (-14.0%) (-0.30, 1.09) 234 3.448 P<0.001 Yes	Attitude				(-0.56, 0.07)	234	-1.514	0.131	No
Challenge (-0.30, 1.09) 234 3.448 P<0.001 Yes	Practice				(-0.33, -0.13)	237	-4.481	P<0.001	Yes
(1.02) (1.00) (-11.5%)	Challenge	3.58/6 (1.02)	2.89/6 (1.00)	-0.69/6 (-11.5%)	(-0.30, 1.09)	234	3.448	P<0.001	Yes

- Knowledge: t(234)=2.990, p<0.01 = <u>Significant</u> difference (<u>Teachers</u> have greater AI knowledge)
- Attitude: t(234)=-1.514, p=0.131 (>0.05) = Non-significant difference in attitude (Both positive)
- Practice: t(234)=-4.481, p<0.001 = <u>Significant</u> difference in practice (Students use AI tools more diversely)
- Challenges: t(234)=3.448, p<0.001 = <u>Significant</u> difference in perceptions/challenges (Teachers cautious, students ready for AIEd)

IED GEOGRAPHY TRIAL RESULTS

Dimension	(Experimental group) (n=29) Pre-test Post-test				Change in	95% CI for the	Degrees of		P-value	
	Overall mean (%)	Standard Deviation	Overall mean (%)	Standard Deviation	Difference (%)	change	freedom	t-value	(Two-tailed)	Significance
Knowledge	4.97/10 (49.7%)	2.03	6.83/10 (68.3%)	1.69	1.86/10 (18.6%)	(-2.65, -1.07)	28	-4.815	P<0.001	Yes
Knowledge Interpretation	4.11/6 (68.5%)	0.83	4.34/6 (72.3%)	0.62	0.23/6 (3.8%)	(-0.48, 0.01)	28	-1.957	0.06	No
Learning Interest	4.45/6 (74.2%)	0.64	4.48/6 (74.3%)	0.72	0.03/6 (0.5%)	(-0.29, 0.22)	28	-0.275	0.79	No
Learning Experience	4.76/6 (79.3%)	0.66	4.83/6 (80.5%)	0.73	0.07/6 (1.2%)	(-0.35, 0.22)	28	-0.497	0.62	No

	Overall	Standard	Overall	Standard	(%)	change	freedom		(Two-tailed)	
	mean (%)	Deviation	mean (%)	Deviation						
Knowledge	4.63/10	1.47	5.15/10	1.53	0.52/10	(-1.17, 0.13)	26	-1.657	0.11	No
Kilowieuge	(46.3%)	1.47	(51.5%)		(5.2%)					
Knowledge	3.75/6	0.67	3.81/6	0.67	0.06/6	(-0.28, 0.15)	26	-0.624	0.54	No
Interpretation	(62.5%)	0.07	(63.5%)	0.07	(1.0%)	(-0.28, 0.13)	20	-0.024	0.34	NO
Learning	3.90/6	0.82	3.92/6	0.69	0.02/6	(-0.27, 0.22)	26	-0.185	0.86	No
Interest	(65.0%)		(65.3%)		(0.3%)					
Learning	4.16/6	0.62	4.20/6	0.68	0.04/6	(-0.32, 0.23)	26	-0.342	0.74	No
Experience	(69.3%)	0.02	(70.0%)	0.00	(0.7%)	(-0.52, 0.25)	20	0.542	V./4	

- Geographical knowledge: <u>AIEd group</u> showed <u>significant</u> improvement (p<0.001) & <u>greater consistency</u> (SD reduced by 0.34) while the control group performed non-significant improvement
- Knowledge interpretation, learning interest, learning experience: non-significant improvements (p > 0.05)

QUALITATIVE ANALYSIS OF POST-TRIAL ASSESSMENT

- AIEd group showed longer, more detailed, and reasoned responses compared to the control group (with <u>causal connections</u>)
- Supports AlEd's potential to enhance qualitative <u>expression</u> in geography education

control group -

Responses from the AIEd group

Implications -

1. SIMILARITIES AND DIFFERENCES

- Teachers: Higher knowledge driven by training and experience, cautious attitude, and limited practice due to <u>professional and generational barriers</u>
- Students: Moderate knowledge from limited exposure, optimistic attitude, and diverse practice due to digital fluency

2. EFFECTIVENESS OF AIED COMPARED TO THE TRADITIONAL METHOD

- Academic performance boosted by AIEd's personalized feedback, engagement, and multisensory elements
- Learning interest/experience varies due to <u>diverse student preferences</u>, Al skepticism, and lesson design

3. OPPORTUNITIES AND CHALLENGES

- Opportunities: Enhanced <u>academic performance</u>, support for diverse <u>learning modalities</u>, reduced <u>teacher workload</u>, advanced study facilitation, and improved revision processes
- Challenges: <u>Data privacy</u> concerns, <u>accuracy</u> of AI content, teachers' <u>AI literacy</u> concerns, teachers' adaptability, students' preference for traditional methods, institutional <u>preparedness</u>

1. TAILORING AI TOOLS TO HONG KONG CURRICULUM

Al-generated assessments lack <u>accuracy</u> & misalign with HKDSE marking schemes → Training AI with <u>localized</u> curriculum resources and HKDSE frameworks

2. ENHANCING TEACHER TRAINING & SUPPORT

• Limited <u>geography-specific</u> AIEd resources and professional development \rightarrow Implementing <u>comprehensive</u> and <u>regular</u> workshops on practical Al applications in geography

3. FOSTERING STUDENT AI LITERACY

• Misutilization of AI by students may harm academic integrity \rightarrow Implementing targeted literacy training to position Al as a learning assistant

4. ESTABLISHING ETHICAL REGULATIONS

• Lack of clear policies on AI use in assessments threatens educational ethics → Developing Hong Kong-specific policies prohibiting direct Al-generated submissions

