# Knowledge, Attitudes and Behaviors of Hong Kong citizens

# on Extreme Rainfall under the Climate Change

Leung Sin Ki, Sanky Supervised by Prof. Li Jianfeng

## RESEARCH BACKGROUND

- The frequency & intensity of extreme rainfall under climate change in HK will increase, more likely to trigger flooding & landslides
- Gov. & citizens play equally important roles in mitigating & adapting to extreme rainfall under climate change

### RESEARCH SIGNIFICANT

- Filling the research gap on citizens' knowledge, attitudes and behaviour(KAB) towards extreme rainfall under climate change
- Better formulate relevant education & policies
- Promote citizen action to mitigate & adapt for extreme rainfall under climate change by raising public awareness

# RESEARCH OBJECTIVES

- 1. To reveal the knowledge of citizens about the causes and effects of extreme rainfall under climate change
- 2. To know the attitudes of citizens towards mitigating and adapting to rainfall under climate change
- 3. To investigate the behaviors of citizens to mitigate and adapt extreme rainfall climate change
- 4. To determine the relationship between citizens' KAB

## **CONCEPTUAL FRAMEWORK**



1. Facts 2. Causes 3. Impacts





1.Cognition 2.Emotional 3.Behavioral Tendencies





1. Mitigation 2. Adaptation

# DATA COLLECTION

# Online Questionnaire

250 Samples

- 1. Convenience sampling
- 2. Voluntary response sampling
- 3. Snowball sampling

# DATA ANALYSIS

1. Scoring

Hong Kong citizens' behaviors on extreme rainfall under climate change (N=250)

Que

37-41

42-44

47-52

55-60

18-36

Citizens' behavior frequency is between "Sometimes" and "Often" but tends to be "sometimes"

• Citizens' behavior frequency of mitigating climate change > adapting extreme rainfall

• Citizens perform better in mitigating climate change: 👍 Energy saving 🔋 & Carbon reduction 🛗

• The frequency of Household response behaviors for extreme rainfall > preparedness behaviors

Calculate the scores of respondents' KAB

2. Pearson correlation

Highest

Score

25

15

30

30

100

Find the relationship between citizens' KAB

Lowest

Score

3

3. Simple linear regression

Identify the interactions of citizens' KAB



# FINDINGS & IMPLICATIONS

| Hong Kong citizens' knowledge on extreme rainfall under climate change (N=250) |          |         |        |                 |      |  |  |  |
|--------------------------------------------------------------------------------|----------|---------|--------|-----------------|------|--|--|--|
| Category                                                                       | Question | Highest | Lowest | Mean            | SD   |  |  |  |
|                                                                                |          | Score   | Score  |                 |      |  |  |  |
| Causes of climate change                                                       | 1-3      | 6/6     | 0/6    | 4.2/6 (70%)     | 1.28 |  |  |  |
| Impacts of climate change                                                      | 4-7      | 4/4     | 0/4    | 3.0/4 (75%)     | 1.12 |  |  |  |
| Knowledge about climate change                                                 | 1-7      | 10/10   | 2/10   | 7.2/10 (72%)    | 2.07 |  |  |  |
| Facts about extreme rainfall                                                   | 8-10     | 3/3     | 0/3    | 2.3/3 (76.7%)   | 0.98 |  |  |  |
| Causes of extreme rainfall                                                     | 11       | 5/5     | 1/5    | 3.2/5 (64%)     | 1.03 |  |  |  |
| Impacts of extreme rainfall                                                    | 12-16    | 8/12    | 2/12   | 6.0/12 (50%)    | 1.37 |  |  |  |
| Knowledge about extreme rainfall                                               | 8-16     | 16/20   | 4.5/20 | 11.5/20 (57.5%) | 2.62 |  |  |  |
| Overall                                                                        | 1-16     | 25.5/30 | 7.5/30 | 18.7/30 (62.3%) | 4.23 |  |  |  |

- Citizens' knowledge of extreme rainfall under climate change is "Average"
- Citizens' knowledge of climate change(72%) > Knowledge of extreme rainfall(57.5%)
- Knowledge about greenhouse gases is still insufficient
- Insufficient understanding of its causes & potential impacts

Especially: Water pollution • & Unsta



| able power supply   KNOWLEDGE |
|-------------------------------|
|-------------------------------|

| ong Kong citizens attitude on extrem               | e raint | fall unde        | r climat        | e change             | = <b>(N</b> = |
|----------------------------------------------------|---------|------------------|-----------------|----------------------|---------------|
| Category                                           | Que     | Highest<br>Score | Lowest<br>Score | Mean                 | SD            |
| Values of climate change and extreme rainfall      | 18-23   | 30               | 12              | 23.96/30<br>(3.99/5) | 4.4           |
| Feelings about climate change and extreme rainfall | 24      | 5                | 1               | 3.78/5<br>(3.78/5)   | 0.9           |
| Attitudes towards climate change mitigation        | 25-29   | 25               | 7               | 16.97/25<br>(3.39/5) | 3.6           |
| Attitudes towards extreme rainfall adaptation      | 30-36   | 35               | 11              | 25.46/35<br>(3.64/5) | 3.9           |
| Overall Attitudes                                  | 18-36   | 93               | 41              | 70.17/95             | 10.6          |

- Citizens' attitude is neutral but tends to be positive
- Citizens' attitude towards climate change mitigation > extreme rainfall adaption
- Citizens are willing to make sacrifices to slow the climate change: Daily convenience > Time > Personal benefits
- Citizens agree that it is important to understand extreme rainfall & prepare for it



| Impact of knowleage on extreme rainfall under climate change on attitudes |                |                |                 |         |         |  |  |  |  |
|---------------------------------------------------------------------------|----------------|----------------|-----------------|---------|---------|--|--|--|--|
| Independent variable                                                      | Unstandardized | Coefficient    | Standardized    | T-value | P-value |  |  |  |  |
|                                                                           | Coefficient    | Standard error | Coefficient (β) |         |         |  |  |  |  |
| Constant term                                                             | 43.785         | 2.535          |                 | 17.273  | < 0.001 |  |  |  |  |
|                                                                           |                |                |                 |         |         |  |  |  |  |

Category

Household preparedness behaviors for extreme rainfall

Household response behaviors for extreme rainfall

Action about climate change mitigation behaviors

Raise awareness of extreme rainfall

**Overall Behaviors** 

0.561 The higher knowledge(K) of the citizens  $\Rightarrow$  the more positive their attitudes(A)

Impact of attitudes on extreme rainfall under climate change on behaviors Independent variable T-value P-value Unstandardized Coefficient Standardized Coefficient Standard error Coefficient  $(\beta)$ 36.033 3.945 9.133

Constant term 0.424 0.410 0.056 7.381 < 0.001 Behaviors The higher attitudes(A) of the citizens  $\Rightarrow$  the more positive their behaviors(B)





- 1. Inadequate disaster prevention capacity => Educational needs
- 2. Community vulnerability => Community participation
- 3. Low long-term adaptation capacity => Long-term planning



RELATIONSHIP

SD

3.1

2.6

4.4

3.7

10.3

Mean

18.83/25

(3.77/5)

9.82/15

(3.27/5)

16.49/30

(2.75/5)

19.68/30

(3.28/5)

64.82/100

(3.24/5)

BEHAVIORS

×significant relationship

between knowledge(K) & behaviors(B)

• (K)&(A): r=0.561\*

• (K)&(B): r=0.085

(A)&(B): r=0.424\*

## SUGGESTIONS



School curriculum: more issues of extreme rainfall under climate change in primary general studies & junior geography

ATTITUDE

- Social media: rebranding of the HKO's low-view educational videos & interactive formats to attract public participation
- TV: convey knowledge of extreme rainfall & specific countermeasures through Quiz shows & Reality shows



 Provide convenient resource sharing programs Promote material sharing & exchange activities to enable residents to easily access necessary supplies before extreme rainfall



- Financial subsidies
- Reduce the financial burden of citizens in purchasing emergency supplies
- Cooperating with businesses

Promote preferential activities for purchasing emergency supplies regularly