GRMD 4002 Final Year Thesis II

EVALUATING HONG KONG PEOPLE'S PERCEPTIONAL AND BEHAVIORAL PATTERNS IN VISITING DIFFERENT TYPES OF PUBLIC SPACES AFTER THE

OUTBREAK OF COVID-19 PANDEMIC

Lee Sung On Supervised by Professor Lee Fung, Harry

Research Background

- The outbreak of the coronavirus disease took place in 2019
- The Government imposed restrictions and measures to control the COVID-19 condition according to the Prevention and Control of Disease Ordinance [Cap.
- The pandemic and the corresponding governmental responses have had important implications for public space

Research Objectives

- 1. To explore the behavioral and perceptional patterns of Hong Kong people in visiting different types of public spaces after the outbreak of the COVID-19 pandemic
- 2. To examine the motives of people in Hong Kong in visiting the above-mentioned public spaces
- 3. To investigate the significant factors that influence their visit to public spaces, more than the rest of the factors, during the pandemic

Research Significance

1. Knowledge:

Advance our understanding of public places and related features during the epidemic to address the current research gap in the subject

2. Policy and Management:

Reform the current public space management policies in accordance with the changes in public spaces to accommodate the new normal

Major Findings on Hong Kong People's Travelling Behaviors

- In terms of visiting frequency, the patterns of visiting different public spaces are varied (n =217).
- The most frequently visited public spaces were Urban non-park public spaces (Type 3).
- In terms of duration, the amount of time people spent in different types of public spaces also varied (n = 217).
- People spent the longest time in rural nonpark public spaces (Type 4).

Total Scheffe	Mean		S.D. 1.596			
	2.89					
	F	df_between groups	df_within groups	Sig.		
	86.883	3	864	<.001		
Types of Public Spaces (Mean, S.D.)	Types of I	Public Spaces	Mean Difference	Sig		
Type 1	Type 2		1.166	<.001		
(3.62, 1.72)	Type 3		009	1.000		
	Type 4		1.774	<.001		
Type 2	Type 1		-1.166	<.001		
(2.46, 1.254)	Type 3		-1.175	<.001		
	Type 4		.608	<.001		
Туре 3	Type 1		.009	1.000		
(3.63, 1.431)	Type 2		1.175	<.001		
	Type 4		1.783	<.001		
Type 4	Type 1		-1.774	<.001		
(1.85, 1.122)	Type 2		608	<.001		
	Type 3		-1.783	<.001		

Total	Mean		S.D. 1.222			
	2.63					
Scheffe	F	df_between	df_within groups	Sig.		
		groups				
	156.831	3	864	<.001		
Types of Public	Types of I	Public Spaces	Mean Difference	Sig		
Spaces (Mean, S.D.)						
Гуре 1	Type 2		-1.452	<.001		
1.68, .858)	Type 3		512	<.001		
	Type 4		-1.820	<.001		
Гуре 2	Type 1		1.452	<.001		
(3.13, 1.016)	Type 3		.940	<.001		
	Type 4		369	.002		
Гуре 3	Type 1		.512	<.001		
2.19, .805)	Type 2		940	<.001		
	Type 4		-1.309	<.001		
Гуре 4	Type 1		1.820	<.001		
(3.5, 1.21)	Type 2		.369	.002		
	Type 3		1.309	<.001		

Methodology

Four types of recreational public spaces

- Type 1: Urban Park public spaces
- Type 2: Rural Park public spaces
- Type 3: Urban Non-Park public spaces
- Type 4: Rural Non-Park public spaces

Primary Data:

- 1. Online Questionaire
- 2. Face-to-face interview

Secondary data:

- 1. Books and academic literature
- 2. Governmental and Organisational Publications
- 3. News report

Data Analysis:

.441***

.315***

.480***

.333***

.287***

.182**

.351***

.196**

- 1. One-way ANOVA
- 2. Bivariate Correlation
- 3. Linear Regression

• However, in terms of risks, no significant correlation is identified as the correlation coefficients of the eight cases fail to

Major Findings on Hong Kong People's Perceptions

In terms of rewards, the Reward Index in the four types of

• In terms of context, the Regulation Index also has a positive

public spaces in general (7 out of 8) positively correlate with the

correlation (8 out of 8) with visiting frequency and duration of

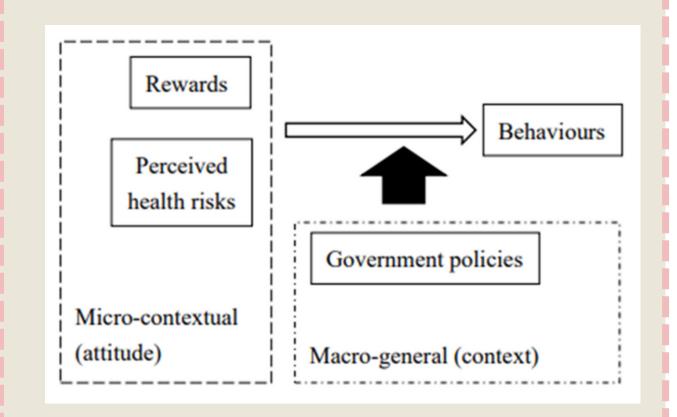
• In 6 out of 8 cases, Regulation Index has a stronger positive

the four types of public spaces.

meet the significant level of 0.05.

visiting frequency and duration respectively

- The eight linear regression models share similar findings with the bivariate correlation analysis (n=217).
- For 6 out of 8 regression models, Regulation Index is the most influencing indicator that influences the visiting pattern of Hong Kong people amid Covid-19.



Public Space 1	Unstandardiz	Coefficient	Standardized	ı	P value	Public Space 3	Unstandardiz	Coefficient	Standardized	ı	P value
	ed Beta	Standard error	Coefficients Beta				ed Beta	Standard error	Coefficients Beta		
Frequency (R Square	e = .255)					Frequency (R Square =	.119)				
(constant)	.324	.512		.632	.528	(constant)	1.401	.512		2.733	.007
Reward Index	.455	.110	.266	4.134	<.001	Reward Index	.286	.098	.212	2.914	.004
Risk Index	.105	.099	.064	1.067	.287	Risk Index	.133	.090	.102	1.470	.143
Regulation Index	.451	.084	.344	5.399	<.001	Regulation Index	.232	.075	.214	3.111	.002
Duration (R Square	149)					Duration (R Square =. I	101)				
(constant)	.650	.272		2.389	.018	(constant)	.873	.291		2.999	.003
Reward Index	.185	.058	.218	3.161	.002	Reward Index	.223	.056	.294	4.000	<.001
Risk Index	058	.053	071	-1.105	.270	Risk Index	.088	.051	.120	1.723	.086
Regulation Index	.151	.044	.231	3.390	<.001	Regulation Index	.050	.042	.082	1.172	.242
Public Space 2	Unstandardi zed Beta	Coefficient Standard error	Standardized Coefficients Beta	t	P value	Public Space 4	Unstandardiz ed Beta	Coefficient Standard error	Standardized Coefficients Beta	1	P value
Frequency (R Square	e =.251)					Frequency (R Square =	.132)				
(constant)	.254	.478		.532	.595	(constant)	.481	.441		1.090	.277
Reward Index	.221	.095	.154	2.330	.021	Reward Index	.106	.078	.094	1.367	.173
Risk Index	013	.083	010	157	.875	Risk Index	.084	.080	.072	1.054	.293
Regulation Index	.379	.059	.418	6.431	<.001	Regulation Index	.255	.052	.325	4.925	<.001
Duration (R Square	151)					Duration (R Square =. I	101)				
(constant)	1.513	.412		3.669	<.001	(constant)	1.631	.484		3.369	<.001
Reward Index	.236	.082	.204	2.886	.004	Reward Index	.310	.085	.253	3.624	<.001
Risk Index	048	.072	043	673	.502	Risk Index	004	.088	003	046	.963

Pearson Correlation

Conceptual Framework

• Modified Attitude-behavior-context (MABC) model

Implications

- In general, people visit urban recreational public spaces more frequently than visiting rural recreational public spaces while people stayed at rural recreational public spaces longer than at rural recreational public spaces under COVID-19.
- Macro-general factors i.e., government regulations are the most crucial factor to explain people visiting behaviors, compared with COVID risk factors, and reward factors, implying anti-COVID measures have critical implications for people's mobility.
- The government failed to consider and properly react to the public response.
- Shifting mobility and differentiated degree of enforcement create two geographically distinct worlds between urban and rural areas.
- Resulted in unexpected problems with carrying capacity and caused environmental disasters.
- Public spaces without government management and control turned into pollution hotspots.

Future directions for Improvement

- Require context-dependent management approaches for each type of public space. Manpower planning and resource allocations should depend on the site-specific visiting frequency and duration at specific types of public spaces
- Implement holistic cautious, and responsive public space management policies: Periodic review and proactive corrective actions are necessary to minimize potential environmental problems.

