Forest Processes Group B

Outline

- 1. Introduction
- 2. Energy flow
- 3. Nutrient cycling
- 4. Litter decomposition
- 5. Discussion

Introduction

Climate: hot and wet Soil: Oxisol derived from metamorphic rock Luxurious vegetation No human disturbance Isolated system

Energy Flow

Laws of thermodynamic

1st: the sum of the net heat, supplied to the system and the net work done by the system is equal to zero

2nd: Degradation of energy from concentrated (non-variation) to dispersed (random) form
e.g. heat dissipation and development of food chain / food webs.

Food Chain

- Food chain is regarded as the energy flow among living organisms
- E.g. grass \rightarrow worm \rightarrow bird
- Only 10% of energy in biomass can be passed to next trophic level
- Energy loss to environment
 - e.g. respiration, excretion and death

Nutrient Cycling

Source of nitrogen:

- Atmosphere (78%)- Dry and Wet deposition
- Input by animals- Dead body and droppings
- They cannot be uptaken by plant directly because it is immobile

3 important pathways in nutrient cycling in TRF

- 1. Throughfall
- 2. Stemflow
- 3. Litterfall

Immobile nitrogen(N2) \rightarrow absorbable form nitrogen(NO3-, NH4+)

- Lightning
- Biological nitrogen fixation in legumes (root nodules have nitrogen fixing bacteria)
 Free living bacteria

Nutrient Cycling

Soil, litter and biomass
Self- Sufficient
Tight and rapid

Soil

Biomass

Litter Decomposition

Originally, the productivity of litter is high
But, due to hot and wet climate
Decomposition rate is high
Hence, standing litter is thin (2-3 tons /hectare)

HumificationMineralization

